Fast Solvers for Time - Harmonic Maxwell ’ s Equations in 3 D by Dhavide Arjunan
نویسنده
چکیده
The speed of iterative solvers for discretizations of partial differential equations (PDEs) is a significant bottleneck in the performance of codes designed to solve large-scale electromagnetic inverse problems. A single data inversion requires solving Maxwell’s equations dozens if not hundreds of times. An inherent difficulty in geophysical contexts is that the conductivity and permeability coefficients may exhibit discontinuities spanning several orders of magnitude. Furthermore, in the air, the conductivity effectively vanishes. In standard formulations of Maxwell’s equations, the curl operator that dominates the PDE operator leads to strong mixing of field components and illconditioning of linear systems resulting from standard discretizations. The primary objective of this research is to build fast iterative solvers for the forward-modeling problem associated with electromagnetic inverse problems in the frequency domain. Toward this goal, a Helmholtz decomposition of the electric field using a Coulomb gauge condition recasts the PDE problem in terms of scalar and vector potentials. The resulting indefinite system is then stabilized by addition of a vanishing term that lies in the kernel of the dominant curl operator. Finally, an extra differentiation recasts the PDE system in a diagonally-dominant form reminiscent of a “pressure-Poisson” formulation for incompressible fluid flow. The continuous PDE problem obtained is equivalent to the original Maxwell’s system but has a structure that is amenable to reliable solution techniques. Using a finite-volume scheme, the PDE is discretized on a staggered grid in three dimensions. The discretization obtained possesses conservation properties typical of finite-volume methods. Furthermore, interface conditions imposed by discontinuities in the material coefficients are sensibly accounted for in deriving the discretization. Although the simple representation of the
منابع مشابه
On a parallel Maxwell eigensolver
Fast domain decomposition solver for internal problems of 3D hierarchical hp-FEM I. Anoufriev, V. Korneev Deriving fast domain decomposition (DD) preconditioners-solvers for hp discretizations of 2-nd order elliptic equations is still a challenge [1], although one pioneering solver of this type has been recently presented in [2] and generalized on adaptive hp discretizations in [3]. As it is we...
متن کاملMixed E–B Finite Elements for Solving 1-D, 2-D, and 3-D Time-Harmonic Maxwell Curl Equations
Using a unified discretization approach based on differential forms, we describe mixed finite element methods (FEMs) in simplicial grids to solve time harmonic Maxwell curl equations in one-, two-, and three-dimensions. The proposed mixed FEM utilizes the electric field intensity and magnetic flux density as simultaneous state variables. Appropriate elements are used as interpolants for and to ...
متن کاملEdge Element Methods for Maxwell's Equations with Strong Convergence for Gauss' Laws
In this paper we propose and investigate some edge element approximations for three Maxwell systems in three dimensions: the stationary Maxwell equations, the time-harmonic Maxwell equations and the time-dependent Maxwell equations. These approximations have three novel features. First, the resulting discrete edge element systems can be solved by some existing preconditioned solvers with optima...
متن کاملDG discretization of optimized Schwarz methods for Maxwell's equations
In the last decades, Discontinuous Galerkin (DG) methods have seen rapid growth and are widely used in various application domains (see [13] for an historical introduction). This is due to their main advantage of combining the best of finite element and finite volume methods. For the time-harmonic Maxwell equations, once the problem is discretized with a DG method, finding robust solvers is a d...
متن کاملNew Nonoverlapping Domain Decomposition Methods for the Harmonic Maxwell System
We study a nonoverlapping domain decomposition method for the harmonic Maxwell equations with a new kind of interface condition. Using Fourier analysis we derive suitable families of transmission conditions in R3 that involve second order tangential differential operators and that guarantee convergence for both propagative and evanescent modes. Such families depend upon parameters that are chos...
متن کامل